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COMPREHENSIVE DETERMINATION OF POTENTIAL-DEPENDENT HEAT- AND MASS-TRANSFER 

CHARACTERISTICS OF DISPERSE MATERIALS 

S. V. Mishchenko and P. S. Belyaev UDC 536.24.093:539.215.4 

A method is proposed for parametric identification of a mathematical model 
of coupled heat and mass transfer (HMT) in a disperse medium. 

The heat- and mass-transfer characteristics of disperse media generally depend on the 
temperature and concentration of the substances distributed in the solid phase, which makes 
it necessary to account for type I nonlinearity [i] in the corresponding inverse problems. 

The methods and equipment that are developed should provide not only for comprehensive 
determination of the HMT characteristics of disperse media, but also for the solution of the 
more complicated problem - recording of the dependence of the sought characteristics on the 
temperature of the test material and the concentration of the substance distributed in it. 

The analysis conducted in [2] showed that the methods and equipment currently used in 
laboratory practice for comprehensive determination of the HMT characteristics of disperse 
materials do not fully meet the above requirements and are in need of improvement. They are 
not sufficiently accurate and lack the proper theoretical and metrological underpinnings. 
Substantial methodological errors are introduced by the linear mathematical models (MM) used 
in place of nonlinear models and the simplifications made to nonlinear models in the deriva- 
tion of the formulas. Another shortcoming of the methods is the need to measure temperature 
and local concentration at several points of the test specimen, which complicates the measur- 
ing equipment and diminishes its reliability. 
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The proposed method makes it possible to comprehensively determine the dependence of 
the sought HMT characteristics on temperature and concentration on the basis of measurements 
of temperature and concentration over time at just one specimen point. 

The below formulas constitute a mathematical model of unidimensional coupled HMT in a 
disperse medium for moderate temperatures and heating rates, when the phase transformation 
criterion can be ignored [3] 

OU 0 am(T, + a~ (T, U) j j (1) 

OT 0 [~,(T, U) OT ], C(T, U)% 0~ = 0---~- ~ j  x > 0 ,  ~>0 ,  Vo=Const. (2) 

It is difficult to identify the given nonlinear MM, i.e., to determine the parameters 
of Eqs. (i) and (2) as a function of the HMT potentials T and U. However, the problem can 
be simplified on the basis of physical considerations. Numerous investigations in heat and 
mass transfer [4] have established that the dependence of the heat capacity of a moist mate- 
rial C on temperature T in the processes being examined can be ignored, while the dependence 
of C on moisture content U can be reliably expressed by the equation 

C (U) = Co + Cq U; Co, Cq -- const. (3) 

The heat capacity of a dry material Co and that of the liquid distributed inside it Cq 
can be determined relatively simply by established methods [5]. We thus assume that the val- 
ues of Co, Cq, and ~0 are known beforehand and that the problem consists of determining the 
functional ddpendence of the following HMT characteristics on T and U:am(T, U),a~ (T, U),~(~ U), 
a(T, U). 

To identify these parameters of the disperse medium being analyzed, we organize the 
physical model in such a way that as to ensure satisfaction of the boundary conditions: 

U(x, O)= Uo, T(x, 0 ) -  To; U(0, "r)=/= Uem T(0, "r)= Ten; 

_ _  OT 0U (x, I;)"->'0, - ~ x  (x, "~)-->-0 where X~OO, 
Ox 

Uo, To, Uen Ten-- coast; Uo =#: Uen.; To =# Ten 

(4) 

i.e., we will use test specimens - which during the tests can be regarded as semiinfinite 
bodies - that have a uniform distribution of temperature T o and concentration U0. At the 
initial moment of time T = 0, we organize heat and mass transfer by the specimen surface x = 
0 with the environment, which has the temperature Ten and mas content ~en. This transfer 
occurs at a rate which precludes external diffusion resistance [3]. 

We will assume that at a certain fixed distance x 0 # 0 from the surface of the body x = 
0 we can experimentally determine, as a function of time, the temperature T(x0, T) and the 
local concentration U(x0, T) of the substance distributed in the body. We will show that in 
this case the sought characteristics can be determined as a function of temperature T and con- 
centration U. 

We note that the inverse problems of heat conduction and HMT are often ill-conditioned 
in the sense of the term used by Adamar [6]. 

To solve ill-conditioned problems, from the general set of solutions we select a set M 
of correct solutions such that: 

i) we know beforehand that a solution exists and that it belongs to the set M; 

2) this solution is unique; 

3) infinitely small variations of the input parameters not leading to a solution from 
the set M correspond to infinitely small variations of the solution. If such a set can be 
isolated, then the problem will be considered correct in the sense of the term used by Tik- 
honov. 

In studying the Tikhonov correctness of mathematical physics problems, the existence of 
a solution and its membership in the correct set M are postulated in the formulation of the 
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problem, i.e., the set M is chosen so that it is clear from previous physical considerations 
that the solution belongs to M. The uniqueness of the solution also follows from physical 
considerations. Thus, for the problem to be correct in the sense of Tikhonov, it is suffi- 
cient that the set M be compact, since this will ensure satisfaction of condition (3) by vir- 
tue of Tikhonov's theorem [6]. 

In the problem (I), (2), (4) being considered, the temperature T and moisture content U 
are bounded functions T(x, ~) @ [To, Ten], U(x, T) @ [U0, Uen]. Moreover, these functions 
do not change discontinuously inside the body. Thus, their derivatives are also bounded 
functions. Meanwhile, the set M of uniformly bounded functions, possessing uniformly bounded 
derivatives, is compact in the space of continuous functions by virtue of Arcel's theorem [7]. 
These conditions guarantee that the solution of the inverse HMT problem will belong to a cor- 
rect compact set. Thus, the problem being considered is correct in the sense of Tikhonov. 

It should also be noted that the set M I of monotonically increasing (decreasing) and 
uniformly bounded functions can be taken as the correct set for the inverse HMT problem being 
examined, since these very conditions are realized in the physical model [the temperature 
and moisture content inside the body are monotonically increasing or decreasing functions, 
depending on the differences (Ten - T o ) and (Uen - U0)]. In this case, the set MI is compact 
in the space of quadratically integrable functions L 2 [7]. 

By making the substitution ~ = x/2V~, we reduce problem (I), (2), (4) in partial deriva- 
tives to a problem involving ordinary derivatives [8]: 

-- 2 ~  (D ,20 d~ = - - ~  ~" (~) ---=- ' g > O, 

(00) = U0, ~ ' (0)  = Uen, T(oo)  = r0,  T-(O) ----- Teil, 

T m T ( ~ ) ~ T ( ~ ,  1/4), 5 ~ D ( ~ ) - - U ( ~ ,  1/4): 

OU 
Comparing 

Ox 
OT x d-r 
0---~- = 4@/2 d~ 

1 OU OT 1 dT 
--= 2 V ~  d~ ' Ox =----~2 d~ 

we obtain 

respectively, with 
OU x dlJ 

- -  -- and 
0'I; 4@/2 d~ 

OU 2"c OU 
Ox x 0"~ ' 

OT 2"~ OT 
Ox x O~ 

(5)  

(6 )  

It should be noted that 

0 [ (U, T) OU I 1 [(Oam d~ 
am O---U + -  

I T) OU ] x o (u, = 
O'c am -'-~x J 4"~ 3/z 

Oam tiT" ) ~ 1 
+ oF ~ d~- 2 V ~  +am d---( 

Oam drF ) d~J 
or o(  + 

[( Oam dD 
- -  o---~-- o~ + 

1 § ara daU ) 
x 2 -i/Y d~ ~ ' 

d~O ], 
am j 

from which 

T) OU ] _  2"~ 0 0 am (U, 
Ox Ox J x 0"~ 

[am(U, T) OU ] am dD 
[ o~ ] 2 V ~  d~ 
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Considering that 

OU .u 
- -  am?o --ffffx = Ira, (7) 

we find 

Ox a (U, T)-07-  =-~o x 0"~ + " (8)  

Similarly, 

o arm (u, r) --aV -~o 2 ~ + x / '  0~ = (9)  

a [x (u ,  - - -  

T) 07" ] 2"~ Oq q 
O x O x J x 0"~ ff x (i0) 

where 

]r = _ ar?o OT 
Ox 

OT q = - - ~ , - -  
Ox 

(ii) 

(12) 

Considering that the flux of the substance Jm in the investigated body is the sum of 
two components: the diffusion flux jm U and the thermodiffusion flux jm T [4]: 

iT. (,, ~) = J~ + J~ = - Vo am T + ~ 7 

Using Eqs. (5) and (6), we find that 

xo,m xo,,,2,,o d, 

(13) 

(14) 

Similarly, with allowance for (6) and (i0), we find from (12) and (2) that 

~(U, T)= Xoq(Xo,2.c X)[dT(XO,dz "r) ]-1, 

)~(U, T) x~ [ x dq(xo, "0 ]-I 
a(U, T)-- C(U) 7o = ~ q (xo, "~) dx + 1  �9 

(15) 

(16) 

With allowance for (3) and (8)-(i0), we find from (1)-(2) that 

OU 2~ Oj~ ]~ 
~o Ox x Ox ~ x ' (17) 

OT 2x Oq q 
(Co+CqU)~o 0--7-= x O~ +- - ' x  

Solving (17) and (18) as first-order differential equations for jm(x0, T) and q(x0, 
obtain 

(18) 

E), we 

q (xo, "~) 

Xo'% { U(xo, x)--Uo + 1._~ T } 
im(Xo, ~ ) -  21/~ YT 2 t "~U(x~ ~')-u~ (19) 

"c U 

[ �9 ] �9 } -X~176 [C T(x o, T ) - -T  0 1 ,[ [T(xo,  ~)--To] "v-a/2d~ --]-Cq fU(xo, ~) dZ(x~ ~) ~-l/2a~ ,(20) 
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where x U and XT are the moments of time at which the concentration and temperature in the 
section x0 first deviate from the initial values U0 and To. The constants of integration 

V~7~m(X0, T U) and r 0, T T) in (19) and (20) can be ignored due to their smallness, 
since, first of all, T >> T U, x >> T T and, secondly the derivatives dU/dT(x0, ~U) and dT/ 
d~(x0, XT) are nearly equal to zero, i.e., jm(X0, <U) ~ 0, q(x0, ~T) ~0. The latter follows 
from (5)-(7) and (ii)-(13). Our numerical experiments validated this simplification. 

It follows from (14), (15), and (16) that: 

am (U, T) = [ ~  ]/? Jr �9 [U (x0, 

--am(U, T)dU(xo, 'r,)}[dT(xo, x)]  -* 
dr dx ' (21) 

~,(U, T)= X~?o [:dT(xo, ,'r,) ]-1{Co[ T(xol "O--To 
4x 3/2 dx "i/x ~- 

1 x '~ I + T ~ tr  (~o, ",,) - 7"o1,~-~/~d,~] + c a ~ u (~o, '0 dr  (Xo, ,,,) d,, 
�9 dv 3 /~ / '  ( 2 2 )  

~T ~T 

4x~/~ + U (xo, ~) dT (Xo, x) -1 "0 --To 
-V~- + 

q- [T(xo, v)--To]v-3/2dvq - C--5- [U(xo, v) dT(xo, v) dv .l (23) 
, Co 4 d~ V~ l" 

To ca lcu la t e  amT(U, T) from Eq. (21), i t  is  necessary to f i r s t  determine the  d i f fu s ion  
relation am(U, t). To do this, we conduct a series of tests under isothermal conditions at 
different temperatures Ti, i = i, 2 .... , n, where n is the number of points of the subdivi- 
sion of the temperature interval we are interested in. The relation am(U , Ti) is calculated 
from the equation 

a . ( U ,  T,) = 

,r 

4Ta/2 dU (xo, x) 
dr 

' (24) 

obtained in a manner similar to the above in the course of solving problem (i)-(2), (4) with 
Ten = T o = T i. 

The studies conducted in [3] show that at heat-carrier temperatures less than 100~ 
thermodiffusion can be ignored in calculations of the kinetics of drying of capillary-porous 
materials. This simplifies the initially chosen mathematical model by excluding the term 

0 [a r (U,T)O-~x I (i.e., amT = 0)from Eq. (i). In this case, the characteristics x,a, ax m 

and am are determined from a single test in accordance with Eqs. (22), (23), and 

ar,., (U, T)= 

x~{ U'(xo,]/gx)--Uo ~___21 ~ ~ [U (Xo, v)--Uo]v-a/Mv} 
�9 c U 

4"c3/~ d U  (xo, x) 
d'c 

(25) 

An estimate of the accuracy of the above method of determining HMT characteristics per- 
formed in accordance with [9, i0] showed that the systematic error of determination of the 
sought characteristics from theoretical relations (21)-(25) is 8% for thermal conductivity, 6% 
for diffusivity, and 9% for diffusion. In the determination of thermodiffusion, the error 
of calculation of the characteristics is significantly affected by the contribution of the 
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thermodiffusion flux to the overall mass flow. A reduction in this contribution is accom- 
panied by an increase in the thermodiffusion error, which in the best case is on the order 
of 15-20%. 

The proposed method was tested on several friable and solid materials in the mass trans- 
port of both moisture and of different solvents. The absence of materials with standard char- 
acteristics of coupled HMT and the substantial differences in the numerical values of the 
sought characteristics obtained by different authors for the same given material make it nec- 
essary to evaluate the reliability of the method and results by analyzing the adequacy of the 
chosen model to the physical HMT process realized in a test. The data obtained on the HMT 
characteristics of the investigated materials was used as a basis for calculating theoretical 
curves depicting the change in specimen temperature and concentration as a result of numeri- 
cal solution of a direct nonlinear problem of coupled HMT with the conditions realized in an 
independent experiment. Comparison of the theoretical and experimental curves of change in 
temperature and concentration in different sections of the specimens showed that their differ- 
erence did not exceed the errors of measurement of the respective field quantity. This is 
evidence of the accuracy of the proposed method and the reliability of the results obtained 
for the HMT characteristics of the investigated materials. 

NOTATION 

T, temperature of the medium, K; U, concentration of substances distributed in the medi- 
um, kg/kg; am, diffusion, m2/sec; a~ , thermodiffusion, m2/(sec'K); C, Co, Cq, specific heat 
capacity of the medium, the medium at U = 0, and the substance distributed in the medium, J/ 
(kg'K); 7o, density of the dry material, kg/mS; ~, thermal conductivity, W/(m'K); a , diffu- 

sivity, m2/sec; jm U, jm T, Jm, density of the diffusion, thermodiffusion, and total fluxes of 

the substances, kg/(m2.sec); q, heat flux, W/m2; x, space coordinate; T, time. 

LITERATURE CITED 

i. L. A. Kozdoba, Solutions of Nonlinear Problems of Heat Conduction [in Russian], Kiev 
(1976). 

2. S. V. Mishchenko, P. S. Belyaev, and Yu. M. Petraev, Methods of Studying the Thermophysi- 
cal and Kinetic Characteristics of Disperse Materials. Tambov (1986). Submitted to 
NIITEKhIM 08.07.86, No. 969-khp-86. 

3. S. P. Rudobashta, Mass Transport in Systems with a Solid Phase [in Russian], Moscow 
(1980). 

4. A. V. Lykov, Theory of Drying [in Russian], Moscow (1968). 
5. P. S. Belyaev, I. F. Borodin, B. I. Gerasimov, et al., Instruments for Monitoring and 

Controlling Drying Processes (Handbook) [in Russian], S. V. Mishchenko, Moscow (1985). 
6. A. I. Tikhonov and V. Ya. Arsenin, Methods of Solving Ill-Conditioned Problems [in Rus- 

sian], Moscow (1986). 
7. A. I. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional 

Analysis [in Russian], Moscow (1976). 
8. V. A. Vertogradskii, Teplofiz. Vys. Temp., ~, No. 1126-1128 (1967). 
9. A. N. Seidel, Errors of Measurement of Physical Quantities [in Russian], Leningrad 

(1974). 
!0. O. A. Sergeev, Metrological Principles of Thermophysical Measurements [in Russian], 

Moscow (1972). 

551 


